Acyclic coloring of graphs with maximum degree five

نویسندگان

  • Hervé Hocquard
  • Mickaël Montassier
چکیده

An acyclic k-coloring of a graph G is a proper vertex coloring of G which uses at most k colors such that the graph induced by the union of every two color classes is a forest. In this paper, we mainly prove that every 5-connected graph with maximum degree five is acyclically 8-colorable, improving partially [5].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to compute acyclic chromatic index of certain chemical structures

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...

متن کامل

Acyclic vertex coloring of graphs of maximum degree 5

An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of a graph G = (V,E). For a family F of graphs, the acyclic chromatic number of F , denoted by a(F ), is defined as the maximum a(G) over all the graphs G ∈ F . In this p...

متن کامل

Acyclic coloring of graphs of maximum degree five: Nine colors are enough

An acyclic coloring of a graph G is a coloring of its vertices such that: (i) no two neighbors in G are assigned the same color and (ii) no bicolored cycle can exist in G. The acyclic chromatic number of G is the least number of colors necessary to acyclically color G. In this paper, we show that any graph of maximum degree 5 has acyclic chromatic number at most 9, and we give a linear time alg...

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

Graphs with maximum degree 5 are acyclically 1 7 - colorable ∗ 2 Alexandr

9 An acyclic coloring is a proper coloring with the additional property that the union of 10 any two color classes induces a forest. We show that every graph with maximum degree at 11 most 5 has an acyclic 7-coloring. We also show that every graph with maximum degree at 12 most r has an acyclic (1 + b (r+1) 2 4 c)-coloring. 13

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010